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Improved multifractal box-counting algorithm, virtual phase transitions, and negative dimensions

Markus Alber and Joachim Peinke
Experimentalphysik II, Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 1 October 1997!

Most algorithms for numerical multifractal analysis rely on some evaluation of related scaling laws. We
present a self-consistent way to obtain from a partition sumSq( l ) the spectrum of singularitiesf (a) and its
confidence intervals. With this tool we gain insights into the intricacies of fixed-size algorithms and propose
consequent improvements. We give a numerical analysis of the He´non attractor which displays theoretical
predictions of a phase transition.@S1063-651X~98!01005-8#

PACS number~s!: 47.53.1n, 05.45.1b, 47.10.1g
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Following the seminal paper of Halseyet al. @1# on mul-
tifractals, a continuing surge of interest in multifractals h
arisen. In the course of this development a substantial n
ber of algorithms for the numerical analysis of both physi
and artificial multifractal objects have been invented, a
partially acquired a widespread popularity despite a num
of open questions as to accuracy and reliability.

Most algorithms in use today are based on the thermo
namically inspired formulation of multifractals, and it is fo
those that the ideas outlined in this paper apply. For
purpose of demonstrating the capabilities of our methods
deliberately pick one class of algorithms which is deemed
be particularly flawed and demonstrate that it can be
proved up to, and exceeding, the standard of other a
rithms: fixed-size box counting~see Ref.@2#!.

Some work has been done to demonstrate that the pe
mance of fixed-size, or box-counting, algorithms~BCAs! is
far from perfect@3#, several natural limitations have ofte
been pointed out@14,5–7#, and many improvements hav
been proposed@8–13#.

In this paper, we demonstrate that correcting the ubiq
tous double-logarithmic plots of some sampled quantity
lacunarity effects rids the computations of the dominat
source of systematic errors@7#, and our self-consistent wa
of achieving this yields a considerable qualitative improv
ment of the results. We point out again that in princip
similar gains in reliability should be possible also with oth
sampling procedures~such as correlation integrals@20#, box-
counting derivates@15#, or fixed mass algorithms@16#!. On
the basis of these findings we can quantify the malper
mance of box counting, and subsequently propose am
ments.

Let m be a probability measure defined on a~possibly
fractal! supportE,Rd. We are interested in the spectrum
singularitiesf (a) of local Hölder exponenta:

a~x!5 lim
l→0

logm„B~ l ,x!…

logl
, ~1!

where B( l ,x) is the ball centered atxPE with radius l
@1,2,17,18#. In many cases,f (a) can be interpreted as th
Hausdorff dimension of the set ofxPE with local Hölder
exponenta. To these ends we coverE with a grid of boxes
~hypercubes! B( l )5) j 51

d
„nj l ,(nj11)l … of size l , where the
571063-651X/98/57~5!/5489~5!/$15.00
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nj are integers. We then calculate theqth moment~or parti-
tion function! Sq( l i) of m for several l iPL
5$ l 1 ,l 2 , . . . ,l n% andqPQ5$q1 ,q2 , . . . ,qn% by

Sq~ l i !5 (
m~B!Þ0

@m~B!#q5^mq&. ~2!

Brackets^ & indicate sample averages as usual.
The generalized dimensions D(q) ~for qÞ1) and the

scaling functiont(q) are defined by

t~q!5D~q!~q21!5 lim
l→0

logSq~ l !

logl
. ~3!

In practice one might hope thatSq scales withl :

logSq~ l i !5t~q!log~ l i !1c1e ~4!

and so obtaint(q) via a least squares line fit to the plot o
logSq(li) against logli for all suitable l i with the statistical
deviatione.

Frequently, the Legendre transformation oft(q) is con-
sidered@1#:

a5
]t

]q
, f 5qa2t, ~5!

which shall not be the main subject here@19#.
Apart from obvious questions of how the resolution a

finiteness of the sample and the presence of noise affec
algorithm, one finds a number of flaws with the procedu
itself. Any fixed-size approach compensates for the lack
knowledge about the fine structure of a fractal or about
generating process by taking the limit of infinitesimal leng
scales, Eqs.~1!,~3!. Without any measure for the accuracy
convergence rate of the scaling behavior of a single aver
on a chosen range of length scalesl i @Eq. ~4!#, and thus of
t(q) for a given q, the interpretation of results become
rather elusive.

In essence, the systematical errors of any fixed-size co
ing procedure are not quantifiable. Note that these errors
quite distinct from those arising from a lack of statistic
resolution of the sample, although both kinds of errors
naturally scale dependent@7# and hence notoriously difficul
to disentangle. Although proposals for statistical correctio
5489 © 1998 The American Physical Society
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5490 57MARKUS ALBER AND JOACHIM PEINKE
have been made@4#, they have to be based on estimat
about the distribution of the measure already obtained
some instance of a sampling procedure, and hence in
must reflect the deficiencies in resolution of the latter.

One example of these inevitable finite-size problems
the well known lacunarity effects. However, there are le
obvious effects, too, equally difficult to treat, and we w
demonstrate some on the example of the He´non attractor.

In practice, much would be gained if error estimates
trayed the presence of hidden systematic errors, and w
based on more profound assumptions about the distribu
of the statistical errore in Eq. ~4!. It has been pointed ou
@3,5# that the ~standard Gaussian! error obtained from the
least-squares fit grossly underestimates the error present
propose a robust method based on a Monte Carlo boots
approach which helps to overcome this problem.

In order to treat the aforementioned effects, we introdu
a scale-dependent intercept into Eq.~4!:

logSq~ l i !5t~q!logl i1C~ l i ,q!. ~6!

The functionC( l i ,q) was termed by Cutler@5,6# thewan-
dering intercept. Our development depends on two assum
tions about the wandering intercept:~i! for fixed l , C( l ,q) is
a slowly varying function ofq; ~ii ! for ‘‘most’’ q we find

C~ l ,q!5F~ l !G~q!. ~7!

These assumptions amount to saying that each mom
‘‘knows’’ about the corresponding deviations from the ide
scaling of moments for nearbyq. The idea is to use this
information to compensate for the adverse effects of th
deviations on the fitting procedure@symmetric scaling-error
compensation~SSC!#. Of course, it remains to be shown
each case that these assumptions hold. As we will see,
often the case that a violation of these assumptions warr
dispensing with the multifractal analysis of a data set
standard means as a whole.

Inspired by a related method introduced by Benziet al.
@21# in the statistical description of fully developed turb
lence, by using Eqs.~6! and~7! we express logSq as a func-
tion of logSq8 instead of logl:

logSq~ l i !5
t~q!

t~q8!
logSq8~ l i !1F~ l i !S G~q!2

t~q!

t~q8!
G~q8!D .

~8!

We can now proceed to fit a line to Eq.~8! to obtain the
quotientt(q)/t(q8). Although we still cannot assume tha
the error distribution is normal, in the absence of at le
some of the systematic errors this deserves more cred
than the standard procedure. To make best use of the m
information contained in all moments, it is desirable to p
logSq as a function of as many logSq8 as possible. We choos
qiPQ,q1,q2,•••,qmax such thatt(qi)/t(qi 11) is ap-
proximately constant for alli . We thus arrive at a globa
linearizedX2 merit function, which in fact is a functional o
t(q):
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3S @t~q8!logSq~ l i !2t~q!logSq8~ l i !1cq2cq8#

~q2q8!w~q!w~q8!
D 2

.

~9!

Of course, this functional may be supplied with addition
terms assuring compliance with constraints such as the
cavity of thet(q) function in the manner of maximum en
tropy methods. Since this method is predominantly intend
to be a qualitative means of evaluating an assumed multif
tal, with the small number ofq this additional term might
well be dropped.

We advance by minimizingX 2 with respect tot(q),
treating thecq as independent constants. For easier and m
stable computation we changed the nonlinear equation~8! to
a linear form and introduced an arbitrary weight functi
w(q), which is intended to amplify the proportion of a mo
ment Sq according to the standard variation of its scali
function t(q), thus giving little weight to smalluqu. Esti-
mates for the confidence intervals of the fitted parameters
obtained by the bootstrap method as described in@23# with
the necessary parameters chosen as in@24#.

The greatest advantage of this method is that we fit
entire functiont(q) to all the available information in one
step, thereby also reducing lacunarity effects. Also, in e
mating the confidence intervals in this comprehensive w
we take into account for allq the systematic errors that ste
from the box-counting procedure but become expressed
for larger uqu. The increase in confidence intervals for sm
uqu is a symptom of poor statistical resolution which is com
pletely ignored by the customary least-squares fit. We exp
the interconnection of small and largeuqu in the SSC fit to
integrate this information into the calculation of the con
dence intervals.

Note that the coefficient matrix derived from Eq.~9! is
singular with one free constant and requires further inform
tion, which can be obtained by taking as referencet(0) or
the entiret(q) as obtained from the standard method. T
accuracy of SSC is limited by the systematic and statist
errors of the chosen reference, and thus although SS
likely to give qualitatively better results, the overall accura
need not improve.

To demonstrate the potential of SSC, we examine the
lowing seemingly simple example: the sample consists of10

equally spaced values from a self-similar deterministic ‘‘b
nomial’’ measure onR generated with the transformation
wk and with splitting factorspk :

w150.4x, p150.7,

w250.5~x11!, p2512p150.3. ~10!

The measure was subsequently ‘‘smeared out’’ by convo
tion with a Gaussian function with width equal to the res
lution of the support of 2210.

As can be seen from Fig. 1 the standard BCA calculat
does not compare well with the analytical solution@1,25#.
Note the considerable improvement by SSC for positiveq.
As a reference,t(0) from standard BCA was chosen.
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57 5491IMPROVED MULTIFRACTAL BOX-COUNTING . . .
The devastating failure of standard box counting for ne
tive q stems from a set of boxes with spuriously small ma
which we will call clipping errors. When raised to a negati
power in the partition sum, these boxes become domina
and hence obliterate all information about the original m
sure@3,14,13#.

Selecting the appropriate scaling intervall P@ l min ,lmax# is
greatly facilitated by using correlation plots of wanderi
interceptsC( l i ,q) againstC( l i ,q8). These plots often show
single points off the line which signals correlation in th
C( l i ,q) @such as in Fig. 2~a!#. These points correspond t
length scalesl i affected by transitory behavior at large leng
scales, and noise or statistical resolution problems at s
scales. Quite frequently we find that, especially for larg

FIG. 1. Thet(q) curves of the binomial measure~10!. The solid
line is the analytical solution. Squares were obtained by stand
BCA; the error is smaller than the size of the squares. Crosses
obtained by simple box counting followed by SSC. Typical 95
confidence intervals are indicated. The dashed line is the asym
for q→2`. Notice its positive intercept which relates to negati
values off (a).

FIG. 2. Wandering intercepts for the He´non attractor plotted
against each other.~a! Good coherence forC( l i ,10.0) against
C( l i ,9.0), ~b! no coherence at the ‘‘plateau’’ forC( l i ,1.5) against
C( l i ,0.0).
-
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q.0, the range of suitable length scales becomes sma
We interpret this effect as a sign of depletion of the data
and conclude that the correspondingSq( l ) and t(q) no
longer take into account the rare events in the sample. In
example~10!, this happens forq at around 5. Interestingly
we find a sharp increase in the confidence intervals fort(q)
for q.5.

Although SSC cannot serve to eliminate a lack of sta
tics, it clearly reveals its influence on the analysis and i
valuable aid in assessing the outcome. The question ma
raised if information which fails to be resolved at the stage
computing the partition function can possibly be retrieved
a later stage at all.

At first sight, the situation is hopeless with negativeq.
However, the sharp kink int(q) at q5qc and its abnormal
behavior forq,0 can both serve as a model case for a ph
transition between measures and give some informa
about the structure of the original measure. From the co
lation plots ofC( l i ,q) againstC( l i ,q8) we find that all co-
herence is lost forq only a little smaller than 0, see Fig. 2~b!
and reestablished for even smallerq,qc . We interpret these
incoherent fluctuations as a ‘‘phase transition’’ between
genuine measurem and avirtual measuren generated by
clipping errors at ‘‘temperature’’qc . Although it is impos-
sible to define neither the measuren nor its support in the
limit l→0, there are clearly more almost empty boxes a
finite length scale than there ought to be. In the limit
infinite resolution this measure vanishes, hence the t
‘‘virtual.’’ We support this view with the following findings.

Despite its artificial nature, the virtual measure sha
some of the features which are commonly held to be pecu
to fractal measures: it displays a scaling behavior and
thus be assigned a dimensionlike quantity, and it lives~ten-
tatively! on a support which is the subset of a fractal. In fa
the slope oft(q,qc) corresponds to the density of the me
sure on the clipping boxes and is thus directly related
only to the multifractal measure itself, but also to issues s
as noise and statistical and spatial resolution of the d
Secondly, the intercept of the asymptote shows how
boundary of thel -parallel body ofE5 supp(m) scales with
l . Quite obviously this interpretation is only meaningful
we bear in mind that we do not treat a multifractal in
mathematical sense, but only a very limited approximation
it. In these terms,f „a(q52`)… is a measure of how much
the experimentalm is concentrated on its apparent suppo
and hence the degree of apparent fractality of the sam
The smallerf „a(q52`)…, the smaller the resemblance o
the experimental fractal to its idealized image.

We find increased and incoherent fluctuations inC( l i ,q)
for q in a small interval aroundqc as well as a kink int(q)
at qc . The assumptions for SSC do not hold. These signs
usually read as the signature of a phase transition. It is
possible to distinguish this virtual phase transition from
real one by the mere information provided by the algorith

As Mandelbrot@26# pointed out, for measures such as t
virtual measure in this case negative values off (a) can oc-
cur naturally as a consequence of their randomness. This
be attributed to the fact that for a virtual measure the lim
l→0 of the expected valuesSq( l )5^mq& need not converge
to the expected value of the limit, which in this case is ze
In example~10! there are indeed negative values forf (a), as
can be read from the positive intercept with the vertical a
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5492 57MARKUS ALBER AND JOACHIM PEINKE
of the asymptote tot(q) for negativeq, as well as, to much
greater accuracy, from the ratios oft(q1)/t(q2) obtained
from SSC. ~Note that there exist q1,q2,0 with
t(q1)/t(q2).q1 /q2 if and only if the intercept of the
asymptote is positive.!

The final check is to cross check the standard BCA w
one of the algorithms specially devised to eliminate clipp
errors as introduced in@8,13# and in the following. Although
the adverse effects of the virtual measure are diminish
SSC nevertheless reveals a phase transition, but typic
shifted to smallerqc .

The best results might be obtained by combining S
with the compound algorithm discussed in detail below,
Fig. 3.

To ameliorate the effect of ill-adapted, i.e., clipping co
ers we propose an algorithm based on balls with a ‘‘fuzz
center location. For every length scalel k we define a set of
displacementsud( l k) j u, l k j 51,2, . . . ,n and define the
‘‘mass’’ of the ball B(xi) with radius l k belonging to the
l k-grid point xi as

m̄~xi !5m„B~xi !…)
j

Q~m„B~xi1d j !…!, ~11!

for q.0, whereQ(x) denotes the Heaviside function. Fo
q,0 this is modified by taking the geometric mean over
displaced balls:

m̄~xi !5S )
j 51

n

m„B~xi1d j !…D 1/n

, ~12!

which effectively amounts to taking the average Hoelder
ponent ofm over all balls considered. For these algorithm
Sq( l i) in Eq. ~2! has to be replaced by a normalized versio

Sq* ~ l i !5Sq~ l i !/„S1~ l i !…
q, ~13!

sinceS1( l ) is no longer constant.

FIG. 3. Thet(q) curves of example~10!. The solid line and
opaque squares are as in Fig. 1. Crosses indicate results obtain
fuzzy disc counting followed by SSC. Typical error bars are giv
h
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With this compound algorithm we also made an analy
of the attractor of the standard He´non mapping@27# with
parametersa51.4 andb50.3. The He´non attractor puts any
algorithm to a serious test because of its nonhyperbolic
which was elaborated on from a theoretical point of view
@14,29,30#. With respect to the numerics, the algorith
should resolve the transition from the ‘‘hyperbolic phase’’
the ‘‘nonhyperbolic phase’’ atqc'2.24 @29#, which consti-
tutes a problem in itself far from the limit of infinitesima
length scales. Furthermore, the distribution of the reside
measure on the attractor is far from even: while the ‘‘turni
points’’ ~i.e., the vicinity of the homoclinic tangency points!
attract the bulk of the iterations and are statistically high
resolved, very little mass is spread out along the stratifi
parts of the attractor@7#. In effect, the algorithm has to dea
with poor statistical and spatial resolution even if many
erations are taken into account.

To demonstrate the performance of our algorithm for
experimental setup, we restrict the calculation to 250 0
iterations, using 32 displacements for fuzzy disc counting
to 1/4 l . Figure 4 shows the spectrum of generalized dim
sions which is in excellent agreement with theoretical p
dictions given in@29# and numerical findings in@14,28,16#.
Remarkably, SSC does not only show signs of a phase t
sition for q'2.24, but also, if thel i are chosen small enough
for the whole hyperbolic phase from21 to 2. We interpret
this as a sign of the onset of data depletion, and the com
ing measure in this case as a number of isolated points on
attractor without statistical significance. For even smallel i
this may even lead to a nondecreasing function of gene
ized dimensions. In our analysis, the range of length sc
was chosen from 1/16 to 1/2048 of the diameter of the
tractor.

We should point out that in some cases SSC beco
numerically unstable if too manyq are used in the calcula
tion, i.e., t(qi)/t(qi 11) becomes too small. However, ou
main objective was to provide a reliable qualitative tool, a
we have been led to believe that SSC extracts much of
information contained in the set ofSq , and quite frequently
reveals deficiencies; e.g., the virtual measures which wo
otherwise be overlooked by standard methods. Together
powerful counting algorithms, the long standing limitatio
of BCAs could be overcome.

M.A. gratefully acknowledges the outstanding support
enjoyed at St. Andrews, and acknowledges useful disc
sions with K. Falconer and L. Olsen.

by
.

FIG. 4. The generalized dimensionsD(q) for the Hénon attrac-
tor as obtained with fuzzy disc counting.
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